Gene Ontology (GO)#
Pathways represent interconnected molecular networks of signaling cascades that govern critical cellular processes. They provide understandings cellular behavior mechanisms, insights of disease progression and treatment responses. In an R&D organization, managing pathways across different datasets are crucial for gaining insights of potential therapeutic targets and intervention strategies.
In this notebook we manage a pathway registry based on “2023 GO Biological Process” ontology. We’ll walk you through the steps of registering pathways and link them to genes.
In the following Standardize metadata on-the-fly notebook, we’ll demonstrate how to perform a pathway enrichment analysis and track the dataset with LaminDB.
Setup#
!lamin init --storage ./use-cases-registries --schema bionty
Show code cell output
❗ Couldn't retrieve user id (the `created_by` field couldn't be set correctly).
Your user is not yet part of the User registry of this instance. Run
from lamindb_setup._init_instance import register_user
register_user(ln.setup.settings.user)
💡 connected lamindb: testuser1/use-cases-registries
import lamindb as ln
import bionty as bt
import gseapy as gp
bt.settings.organism = "human" # globally set organism
💡 connected lamindb: testuser1/use-cases-registries
Fetch GO pathways annotated with human genes using Enrichr#
First we fetch the “GO_Biological_Process_2023” pathways for humans using GSEApy which wraps GSEA and Enrichr.
go_bp = gp.get_library(name="GO_Biological_Process_2023", organism="Human")
print(f"Number of pathways {len(go_bp)}")
Number of pathways 5406
go_bp["ATF6-mediated Unfolded Protein Response (GO:0036500)"]
['MBTPS1', 'MBTPS2', 'XBP1', 'ATF6B', 'DDIT3', 'CREBZF']
Parse out the ontology_id from keys, convert into the format of {ontology_id: (name, genes)}
def parse_ontology_id_from_keys(key):
"""Parse out the ontology id.
"ATF6-mediated Unfolded Protein Response (GO:0036500)" -> ("GO:0036500", "ATF6-mediated Unfolded Protein Response")
"""
name, id = key.rsplit(" (", 1)
id = id.rstrip(")")
return id, name
go_bp_parsed = {}
for key, genes in go_bp.items():
id, name = parse_ontology_id_from_keys(key)
go_bp_parsed[id] = (name, genes)
go_bp_parsed["GO:0036500"]
('ATF6-mediated Unfolded Protein Response',
['MBTPS1', 'MBTPS2', 'XBP1', 'ATF6B', 'DDIT3', 'CREBZF'])
Register pathway ontology in LaminDB#
bionty = bt.Pathway.public()
bionty
Show code cell output
PublicOntology
Entity: Pathway
Organism: all
Source: go, 2023-05-10
#terms: 47514
📖 .df(): ontology reference table
🔎 .lookup(): autocompletion of terms
🎯 .search(): free text search of terms
✅ .validate(): strictly validate values
🧐 .inspect(): full inspection of values
👽 .standardize(): convert to standardized names
🪜 .diff(): difference between two versions
🔗 .to_pronto(): Pronto.Ontology object
Next, we register all the pathways and genes in LaminDB to finally link pathways to genes.
Register pathway terms#
To register the pathways we make use of .from_values
to directly parse the annotated GO pathway ontology IDs into LaminDB.
pathway_records = bt.Pathway.from_values(go_bp_parsed.keys(), bt.Pathway.ontology_id)
ln.save(pathway_records, parents=False) # not recursing through parents
Register gene symbols#
Similarly, we use .from_values
for all Pathway associated genes to register them with LaminDB.
all_genes = bt.Gene.standardize(list({g for genes in go_bp.values() for g in genes}))
gene_records = bt.Gene.from_values(all_genes, bt.Gene.symbol)
ln.save(gene_records);
❗ found 40 synonyms in Bionty: ['C11ORF65', 'C3ORF33', 'C3ORF38', 'SLC9A3R2', 'C12ORF4', 'C9ORF72', 'C2ORF69', 'C12ORF29', 'HSPB11', 'C12ORF50', 'C6ORF89', 'C17ORF99', 'C6ORF15', 'C3ORF70', 'PDZD3', 'C21ORF91', 'C12ORF57', 'C1ORF131', 'C1ORF112', 'SLC9A3R1', 'C1ORF43', 'C10ORF71', 'C18ORF32', 'C9ORF78', 'C18ORF25', 'C11ORF80', 'C2ORF49', 'C8ORF88', 'C1ORF68', 'C1ORF109', 'C1ORF146', 'C20ORF173', 'C17ORF97', 'C8ORF17', 'C17ORF75', 'C1ORF56', 'C10ORF90', 'TRB', 'C19ORF12', 'C15ORF62']
please add corresponding Gene records via `.from_values(['C18orf25', 'C6orf89', 'NHERF2', 'IFT25', 'C12orf50', 'C1orf68', 'C9orf72', 'C9orf78', 'C17orf75', 'C3orf70', 'NHERF1', 'C3orf38', 'C10orf71', 'C10orf90', 'C8orf88', 'C12orf4', 'C1orf109', 'C6orf15', 'C1orf131', 'C1orf112', 'C20orf173', 'C8orf17', 'C21orf91', 'C12orf29', 'C19orf12', 'C3orf33', 'C2orf69', 'C11orf65', 'C18orf32', 'C15orf62', 'C11orf80', 'C2orf49', 'C17orf97', 'NHERF4', 'C12orf57', 'THRB', 'C1orf146', 'C17orf99', 'C1orf43', 'C1orf56'])`
❗ ambiguous validation in Bionty for 1082 records: 'PRDM9', 'GBA1', 'STRCP1', 'ASAP3', 'CASP8AP2', 'OR2T34', 'CCL4', 'OTUD5', 'WASH3P', 'OPRL1', 'CAPN15', 'BRSK2', 'CEP20', 'OR10J1', 'HNF1B', 'AZU1', 'KLF13', 'TRIM43', 'FBL', 'NOXO1', ...
❗ did not create Gene records for 37 non-validated symbols: 'TAS2R36', 'LOC122319436', 'MTRNR2L11', 'DUX3', 'LOC102723996', 'MTRNR2L4', 'LOC344967', 'TRL-AAG2-3', 'CCL4L1', 'SEPTIN14P20', 'LOC102723475', 'MTRNR2L7', 'FOXL3-OT1', 'LOC102724159', 'LOC122513141', 'DGS2', 'TAS2R33', 'LOC107984156', 'LOC100653049', 'AZF1', ...
Manually register the 37 non-validated symbols:
inspect_result = bt.Gene.inspect(all_genes, bt.Gene.symbol)
nonval_genes = []
for g in inspect_result.non_validated:
nonval_genes.append(bt.Gene(symbol=g))
ln.save(nonval_genes)
❗ received 14696 unique terms, 1 empty/duplicated term is ignored
❗ 37 terms (0.30%) are not validated for symbol: LOC122319436, MTRNR2L13, LOC100653049, LOC102724159, MDRV, MTRNR2L2, MTRNR2L7, LOC122513141, LOC112268384, TAS2R33, TAS2R36, MTRNR2L4, FOXL3-OT1, LOC102723996, DGS2, MTRNR2L11, SEPTIN14P20, LOC102723475, AFD1, MTRNR2L5, ...
couldn't validate 37 terms: 'TAS2R36', 'MTRNR2L11', 'LOC122319436', 'DUX3', 'LOC102723996', 'MTRNR2L4', 'LOC344967', 'TRL-AAG2-3', 'CCL4L1', 'SEPTIN14P20', 'LOC102723475', 'MTRNR2L7', 'FOXL3-OT1', 'LOC102724159', 'LOC122513141', 'DGS2', 'TAS2R33', 'LOC107984156', 'LOC100653049', 'AZF1', ...
→ if you are sure, create new records via ln.Gene() and save to your registry
Link pathway to genes#
Now that we are tracking all pathways and genes records, we can link both of them to make the pathways even more queryable.
symbols_gene_records = {record.symbol: record for record in gene_records}
for pathway_record in pathway_records:
pathway_genes = go_bp_parsed.get(pathway_record.ontology_id)[1]
pathway_genes_records = [symbols_gene_records.get(gene) for gene in pathway_genes]
pathway_record.genes.set(pathway_genes_records)
Now genes are linked to pathways:
pathway_record.genes.list("symbol")
['CARD18', 'XIAP', 'CST7', 'CARD8', 'CAST']
pathway_record.genes.list("ensembl_gene_id")
['ENSG00000255501',
'ENSG00000101966',
'ENSG00000077984',
'ENSG00000105483',
'ENSG00000153113']
Move on to the next analysis: Standardize metadata on-the-fly