Jupyter Notebook Binder

Project flow#

LaminDB allows tracking data lineage on the entire project level.

Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.

A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-γ production.

These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.

More specifically: Why should I care about data flow?

Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.

While tracking data flow is easier when it’s governed by deterministic pipelines, it becomes hard when it’s governed by interactive human-driven analyses.

LaminDB interfaces workflow mangers for the former and embraces the latter.

Setup#

Init a test instance:

!lamin init --storage ./mydata
Hide code cell output
❗ Couldn't retrieve user id (the `created_by` field couldn't be set correctly).
Your user is not yet part of the User registry of this instance. Run
from lamindb_setup._init_instance import register_user
register_user(ln.setup.settings.user)
💡 connected lamindb: testuser1/mydata

Import lamindb:

import lamindb as ln
from IPython.display import Image, display
💡 connected lamindb: testuser1/mydata

Steps#

In the following, we walk through exemplified steps covering different types of transforms (Transform).

Note

The full notebooks are in this repository.

App upload of phenotypic data #

Register data through app upload from wetlab by testuser1:

# This function mimics the upload of artifacts via the UI
# In reality, you simply drag and drop files into the UI
def mock_upload_crispra_result_app():
    ln.setup.login("testuser1")
    transform = ln.Transform(name="Upload GWS CRISPRa result", type="upload")
    ln.track(transform=transform)
    output_path = ln.core.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
    output_file = ln.Artifact(
        output_path, description="Raw data of schmidt22 crispra GWS"
    )
    output_file.save()

mock_upload_crispra_result_app()
Hide code cell output
💡 saved: Transform(uid='U3BxICUq8M9mLffQ', name='Upload GWS CRISPRa result', type='upload', updated_at=2024-05-06 19:36:32 UTC, created_by_id=1)
💡 saved: Run(uid='nxzMTxM2SkioaqSPeDN1', transform_id=1, created_by_id=1)

Hit identification in notebook #

Access, transform & register data in drylab by testuser2 in notebook hit-identification.

Hide code cell content
# the following mimics the integrated analysis notebook
# In reality, you would execute inside the notebook
import nbproject_test
from pathlib import Path

cwd = Path.cwd()
nbproject_test.execute_notebooks(cwd / "project-flow-scripts/hit-identification.ipynb", write=True)
Executing notebooks in /home/runner/work/lamin-usecases/lamin-usecases/docs/project-flow-scripts/hit-identification.ipynb
Scheduled: ['hit-identification']
hit-identification 
✓ (4.903s)
Total time: 4.905s

Inspect data flow:

artifact = ln.Artifact.filter(description="hits from schmidt22 crispra GWS").one()
artifact.view_lineage()
_images/5d4b17be46a66d90d3524404c93b6b2662caffc9967d220ea0b5aac8ec25cadc.svg

Sequencer upload #

Upload files from sequencer via script chromium_10x_upload.py:

!python project-flow-scripts/chromium_10x_upload.py
Hide code cell output
💡 connected lamindb: testuser1/mydata
💡 saved: Transform(uid='qCJPkOuZAi9q5zKv', name='chromium_10x_upload.py', key='chromium_10x_upload.py', version='1', type='script', updated_at=2024-05-06 19:36:39 UTC, created_by_id=1)
💡 saved: Run(uid='qIyibGC89qP9RBVAk46g', transform_id=3, created_by_id=1)
✅ saved transform.source_code: Artifact(uid='f7d0voyMs1WwHoVXlx2D', suffix='.py', description='Source of transform qCJPkOuZAi9q5zKv', version='1', size=474, hash='o-QoKgEZGxbk5oBtcAKoWw', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-05-06 19:36:40 UTC, storage_id=1, created_by_id=1)
✅ saved run.environment: Artifact(uid='ZCTEseLh8bdbxLes7vqa', suffix='.txt', description='requirements.txt', size=3428, hash='5BDBXeBEKrLUBHIkJCZ8hg', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-05-06 19:36:40 UTC, storage_id=1, created_by_id=1)

scRNA-seq bioinformatics pipeline #

Process uploaded files using a script or workflow manager: Pipelines and obtain 3 output files in a directory filtered_feature_bc_matrix/:

cellranger.py

!python project-flow-scripts/cellranger.py
Hide code cell output
💡 connected lamindb: testuser1/mydata
💡 saved: Transform(uid='fzjWGa6TRub4Se93', name='Cell Ranger', version='7.2.0', type='pipeline', reference='https://www.10xgenomics.com/support/software/cell-ranger/7.2', updated_at=2024-05-06 19:36:42 UTC, created_by_id=2)
💡 saved: Run(uid='ynfWYlVlcA6DWU1eiV0H', transform_id=4, created_by_id=2)
❗ this creates one artifact per file in the directory - you might simply call ln.Artifact(dir) to get one artifact for the entire directory

postprocess_cellranger.py

!python project-flow-scripts/postprocess_cellranger.py
Hide code cell output
💡 connected lamindb: testuser1/mydata
💡 saved: Transform(uid='YqmbO6oMXjRj65cN', name='postprocess_cellranger.py', key='postprocess_cellranger.py', version='2', type='script', updated_at=2024-05-06 19:36:44 UTC, created_by_id=2)
💡 saved: Run(uid='NuoamNpNlc9w0WwAXm5z', transform_id=5, created_by_id=2)

Inspect data flow:

output_file = ln.Artifact.filter(description="perturbseq counts").one()
output_file.view_lineage()
_images/61a4f5fdf8372f67d753d56e4e2cfabae9b679ef88587359c0c55a04d7e89c47.svg

Integrate scRNA-seq & phenotypic data #

Integrate data in notebook integrated-analysis.

Hide code cell content
# the following mimics the integrated analysis notebook
# In reality, you would execute inside the notebook
nbproject_test.execute_notebooks(cwd / "project-flow-scripts/integrated-analysis.ipynb", write=True)
Executing notebooks in /home/runner/work/lamin-usecases/lamin-usecases/docs/project-flow-scripts/integrated-analysis.ipynb
Scheduled: ['integrated-analysis']
integrated-analysis 
✓ (5.258s)
Total time: 5.260s

Review results#

Let’s load one of the plots:

# track the current notebook as transform
ln.settings.transform.stem_uid = "1LCd8kco9lZU"
ln.settings.transform.version = "0"
ln.track()
💡 notebook imports: ipython==8.24.0 lamindb==0.71.0 nbproject_test==0.5.1
💡 saved: Transform(uid='1LCd8kco9lZU6K79', name='Project flow', key='project-flow', version='0', type='notebook', updated_at=2024-05-06 19:36:51 UTC, created_by_id=1)
💡 saved: Run(uid='IypcyQ0xekMgyBhhTRnZ', transform_id=7, created_by_id=1)
artifact = ln.Artifact.filter(key__contains="figures/matrixplot").one()
artifact.cache()
Hide code cell output
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/Oxo4ffnnmJBaN0sMr1Dl.png')
display(Image(filename=artifact.path))
_images/441ad205ac0103f4b082eb21b8abb0d8df6460d4baa3bb09f60581a127bdf496.png

We see that the image artifact is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

artifact.view_lineage()
_images/ed53773b585c8adb3dab5e4a79fdf81574735f3e7c0a2c90f8cada7a12f6c7fa.svg

Alternatively, we can also look at the sequence of transforms:

transform = ln.Transform.search("Project flow", return_queryset=True).first()
transform.parents.df()
uid name key version description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
6 lB3IyPLQSmvt5zKv Perform single cell analysis, integrate with C... integrated-analysis 1 None notebook None None None None 2024-05-06 19:36:49.546043+00:00 2024-05-06 19:36:49.546069+00:00 2
transform.view_parents()
_images/d3405115b6724af969923b1addd8af9be81569aed16c5899707da20597acbaca.svg

Understand runs#

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

Artifact objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating an artifact:

run = ln.Run(transform=transform)
ln.Artifact(filepath, run=run)
When does an artifact appear as a run input?

When accessing an artifact via cache(), load() or backed(), two things happen:

  1. The current run gets added to artifact.input_of

  2. The transform of that artifact gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

artifact.load(is_run_input=True)

Query by provenance#

We can query or search for the notebook that created the artifact:

transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()

And then find all the artifacts created by that notebook:

ln.Artifact.filter(transform=transform).df()
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual created_at updated_at created_by_id
id
2 kyqDNLeWBggLdMhErgCS 1 None .parquet DataFrame hits from schmidt22 crispra GWS None 18368 PihzyuN-FWc-ld6ioxAuPg md5 None None 2 2 1 True 2024-05-06 19:36:37.727977+00:00 2024-05-06 19:36:37.728000+00:00 1

Which transform ingested a given artifact?

artifact = ln.Artifact.filter().first()
artifact.transform
Transform(uid='U3BxICUq8M9mLffQ', name='Upload GWS CRISPRa result', type='upload', updated_at=2024-05-06 19:36:32 UTC, created_by_id=1)

And which user?

artifact.created_by
User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2024-05-06 19:36:39 UTC)

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).df()
uid name key version description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
1 U3BxICUq8M9mLffQ Upload GWS CRISPRa result None None None upload None NaN None None 2024-05-06 19:36:32.516837+00:00 2024-05-06 19:36:32.516857+00:00 1
2 T0T28btuB0PG5zKv GWS CRIPSRa analysis hit-identification 1 None notebook None NaN None None 2024-05-06 19:36:37.223874+00:00 2024-05-06 19:36:37.223905+00:00 1
3 qCJPkOuZAi9q5zKv chromium_10x_upload.py chromium_10x_upload.py 1 None script None 5.0 None None 2024-05-06 19:36:39.968241+00:00 2024-05-06 19:36:40.432174+00:00 1
7 1LCd8kco9lZU6K79 Project flow project-flow 0 None notebook None NaN None None 2024-05-06 19:36:51.397451+00:00 2024-05-06 19:36:51.397479+00:00 1

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser1, type="notebook").df()
uid name key version description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
2 T0T28btuB0PG5zKv GWS CRIPSRa analysis hit-identification 1 None notebook None None None None 2024-05-06 19:36:37.223874+00:00 2024-05-06 19:36:37.223905+00:00 1
7 1LCd8kco9lZU6K79 Project flow project-flow 0 None notebook None None None None 2024-05-06 19:36:51.397451+00:00 2024-05-06 19:36:51.397479+00:00 1

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
Artifact
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual created_at updated_at created_by_id
id
12 Oxo4ffnnmJBaN0sMr1Dl 1 figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None None None 28814 8zXF_cVwaZnfhmrLbt_0kA md5 None None 6 6 1 True 2024-05-06 19:36:50.518649+00:00 2024-05-06 19:36:50.518673+00:00 2
11 H8SlMyCsAhbaT1fNNacD 1 figures/umap_fig1_score-wgs-hits.png .png None None None 118999 DCFDLUMF-UohaBvkThn0mA md5 None None 6 6 1 True 2024-05-06 19:36:50.287520+00:00 2024-05-06 19:36:50.287542+00:00 2
10 RMopT6nRcVq2PVzA3XWH 1 schmidt22_perturbseq.h5ad .h5ad AnnData perturbseq counts None 20659936 la7EvqEUMDlug9-rpw-udA md5 None None 5 5 1 False 2024-05-06 19:36:45.500242+00:00 2024-05-06 19:36:45.500272+00:00 2
9 MqbLgE3gGj1rM4ZVhaCb 1 perturbseq/filtered_feature_bc_matrix/matrix.m... .mtx.gz None None None 6 oPHuNdnN6djTJBYSmAVwdA md5 None None 4 4 1 False 2024-05-06 19:36:42.789626+00:00 2024-05-06 19:36:42.789643+00:00 2
8 6nNcfDhKxtunu8njPJvD 1 perturbseq/filtered_feature_bc_matrix/features... .tsv.gz None None None 6 1A6iSymE-MPv41hbmGsSIw md5 None None 4 4 1 False 2024-05-06 19:36:42.789066+00:00 2024-05-06 19:36:42.789084+00:00 2
7 gMo2Gn9bLMDT2McN7Uj7 1 perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None None None 6 X8gp1Xta1dIJ_Qr9NDS8jg md5 None None 4 4 1 False 2024-05-06 19:36:42.788302+00:00 2024-05-06 19:36:42.788321+00:00 2
4 YxQ6AgD8G6VEEn8LUMp4 1 fastq/perturbseq_R2_001.fastq.gz .fastq.gz None None None 6 kBf8igIjtkMBCbEYDqrNSQ md5 None None 3 3 1 False 2024-05-06 19:36:40.415484+00:00 2024-05-06 19:36:40.415504+00:00 1
Run
uid transform_id started_at finished_at created_by_id json report_id environment_id is_consecutive reference reference_type created_at
id
1 nxzMTxM2SkioaqSPeDN1 1 2024-05-06 19:36:32.520214+00:00 NaT 1 None None NaN True None None 2024-05-06 19:36:32.520321+00:00
2 p4yInLO3G4hdYE9LEZEO 2 2024-05-06 19:36:37.229487+00:00 NaT 1 None None NaN True None None 2024-05-06 19:36:37.229583+00:00
3 qIyibGC89qP9RBVAk46g 3 2024-05-06 19:36:39.970826+00:00 2024-05-06 19:36:40.429317+00:00 1 None None 6.0 True None None 2024-05-06 19:36:39.970957+00:00
4 ynfWYlVlcA6DWU1eiV0H 4 2024-05-06 19:36:42.332821+00:00 NaT 2 None None NaN None None None 2024-05-06 19:36:42.332918+00:00
5 NuoamNpNlc9w0WwAXm5z 5 2024-05-06 19:36:44.376128+00:00 NaT 2 None None NaN None None None 2024-05-06 19:36:44.376223+00:00
6 dZCax0yTIbFHXFJOf7ms 6 2024-05-06 19:36:49.554311+00:00 NaT 2 None None NaN True None None 2024-05-06 19:36:49.554403+00:00
7 IypcyQ0xekMgyBhhTRnZ 7 2024-05-06 19:36:51.402673+00:00 NaT 1 None None NaN True None None 2024-05-06 19:36:51.402783+00:00
Storage
uid root description type region instance_uid created_at updated_at created_by_id
id
1 aanPpD41cJZb /home/runner/work/lamin-usecases/lamin-usecase... None local None 54ZGqgkROOFf 2024-05-06 19:36:30.854420+00:00 2024-05-06 19:36:30.854438+00:00 1
Transform
uid name key version description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
7 1LCd8kco9lZU6K79 Project flow project-flow 0 None notebook None NaN None None 2024-05-06 19:36:51.397451+00:00 2024-05-06 19:36:51.397479+00:00 1
6 lB3IyPLQSmvt5zKv Perform single cell analysis, integrate with C... integrated-analysis 1 None notebook None NaN None None 2024-05-06 19:36:49.546043+00:00 2024-05-06 19:36:49.546069+00:00 2
5 YqmbO6oMXjRj65cN postprocess_cellranger.py postprocess_cellranger.py 2 None script None NaN None None 2024-05-06 19:36:44.373592+00:00 2024-05-06 19:36:44.373623+00:00 2
4 fzjWGa6TRub4Se93 Cell Ranger None 7.2.0 None pipeline None NaN https://www.10xgenomics.com/support/software/c... None 2024-05-06 19:36:42.330453+00:00 2024-05-06 19:36:42.330474+00:00 2
3 qCJPkOuZAi9q5zKv chromium_10x_upload.py chromium_10x_upload.py 1 None script None 5.0 None None 2024-05-06 19:36:39.968241+00:00 2024-05-06 19:36:40.432174+00:00 1
2 T0T28btuB0PG5zKv GWS CRIPSRa analysis hit-identification 1 None notebook None NaN None None 2024-05-06 19:36:37.223874+00:00 2024-05-06 19:36:37.223905+00:00 1
1 U3BxICUq8M9mLffQ Upload GWS CRISPRa result None None None upload None NaN None None 2024-05-06 19:36:32.516837+00:00 2024-05-06 19:36:32.516857+00:00 1
User
uid handle name created_at updated_at
id
2 bKeW4T6E testuser2 Test User2 2024-05-06 19:36:42.320228+00:00 2024-05-06 19:36:42.320266+00:00
1 DzTjkKse testuser1 Test User1 2024-05-06 19:36:30.851332+00:00 2024-05-06 19:36:39.836831+00:00
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
✅ logged in with email testuser1@lamin.ai (uid: DzTjkKse)
Traceback (most recent call last):
  File "/opt/hostedtoolcache/Python/3.10.14/x64/bin/lamin", line 8, in <module>
    sys.exit(main())
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/rich_click/rich_command.py", line 360, in __call__
    return super().__call__(*args, **kwargs)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1157, in __call__
    return self.main(*args, **kwargs)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/rich_click/rich_command.py", line 152, in main
    rv = self.invoke(ctx)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1688, in invoke
    return _process_result(sub_ctx.command.invoke(sub_ctx))
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1434, in invoke
    return ctx.invoke(self.callback, **ctx.params)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 783, in invoke
    return __callback(*args, **kwargs)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamin_cli/__main__.py", line 103, in delete
    return delete(instance, force=force)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamindb_setup/_delete.py", line 137, in delete
    n_objects = check_storage_is_empty(
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamindb_setup/core/upath.py", line 824, in check_storage_is_empty
    raise InstanceNotEmpty(message)
lamindb_setup.core.upath.InstanceNotEmpty: Storage /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb contains 5 objects ('_is_initialized' ignored) - delete them prior to deleting the instance
['/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/H8SlMyCsAhbaT1fNNacD.png', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/Oxo4ffnnmJBaN0sMr1Dl.png', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/ZCTEseLh8bdbxLes7vqa.txt', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/_is_initialized', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/f7d0voyMs1WwHoVXlx2D.py', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/kyqDNLeWBggLdMhErgCS.parquet']